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Guided Beam Waves Between Parallel

Concave Reflectors

TSUNEO NAKAHARA, MEMBER, IEEE, AND NORITAKA KURAUCH1

Absfracf—A new guided beam wave transmission system is proposed

here, which is composed of two parallel concave reflectors. The principle

is a combination of waveguide and beam wave transmission. The shape of

the reflector cross section and the corresponding mode functions were ob-

tained. Attenuation due to wall current and limited apertore of the reflec-

tors were calculated. Experiments were made to confirm the modes and

the attenuation. One of the remarkable features of this transmission sys-

tem is its field distribution, which is concentrated into a belt-shaped space

between reflectors. Considering this feature, this system seems to be

effectively applied to the railways as a medium for obstacle deteetion and

commmdcation.

I. INTRODUCTION

s

INCE G. Goubau et al. [1], [2] reported the beam

wave transmission in 1961, there have been proposed

several types of the structure conveying the beam

modes. Circular dielectric lens was the original form of phase

transformer [2] of the proposer. T. Nakahara proposed and

analyzed a system of the iterative wing-shaped dielectric

lenses between two parallel conductor plates [3]. The sub-

stitution of the concave reflectors for the dielectric lenses

was independently proposed by M. Soejima and T. Nakahara

[4] in 1963, and by J. E. Degenford et al. [5] in 1964. A

gas lens system for optical transmission was proposed and

measurements were made by S. E. Miller et al. [6] and Beck

[7].

All of these systems have a periodic structure in the

propagation direction. The system proposed here has a uni-

form structure, as shown in Fig. 1 [8]. The waves are propa-

gated, reflecting between reflectors just as in a waveguide

and converged into a beam by concave reflectors on the

transverse cross section.

According to analogy with behavior of the elementary

waves in a rectangular waveguide mode, the modes in this

system would be represented by a mixture of two elementary

beam waves propagating in the direction that makes an

angle 0 with the z-axis in the z-x plane, as is shown in Fig. 2.
The angle 8 is approximately described by mode number m,

which corresponds to a field change in the x-direction, spac-

ing d of the reflectors, and free space wavelength A as

sin 0= mA/2d, where m is an integer.
Thermal loss is presumed to be the same as that of the TE

or TM mode propagation between two parallel conductor

plates of the same spacing d.

Interval of the phase transformers for the elementary

waves in this system is d/tan 0. Diffraction loss per a reflec-

tion can be obtained by substituting d/tan 0 for the phase
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Fig. 1. Beam wave transmission system with

parallel concave reflectors.
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Fig. 2. Propagation of elementary beam waves.

transformer interval or the reflector spacing in the beam

wave theory [1], [9]. This deduction shows that confocal

setting of the reflections would be most favorable for low

loss transmission. The analysis in this paper shows the

validity of these physical observations.

For an analysis of beam waves, two main approaches have

been presented. One applies beam mode description, which

is approximated by the Gaussian-Laguerre function in the

cylindrical coordinates [1], or by the Gaussian-Hermite

function in the rectangular coordinates [3]. Another is the

application of the Huygens principle [9], which leads to an

integral equation for the field distribution on the reflectors

with finite apertures. Although both approaches can be ap-

plied for this transmission system, analysis here is based on

beam mode description in the rectangular coordinates.
One of the interesting aspects of this system is the similar-

ity to the groove guide [10]–[12 ] in structure and in prin-

ciple. The analysis here gives an approach to a particular

case of the groove guide.

II. REFLECTOR AND MODE FUNCTION

When a field distribution is given of a beam mode, the

cross-sectional surface of the reflectors that convey the beam

mode can be obtained by considering the boundary condi-

tion on the surface. If the cross-sectional curve for each

mode has similitude, mode functions for a given pair of

reflectors can be obtained by the proper choice of the trans-

verse wavenumbers for each mode.
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The waves in a uniform waveguide, which has an iso-

tropic, homogeneous, and lossless medium closed with a

conductor surface, are classified into the TE and TM modes.

Even if the transmission space is partially open, the classifi-

cation may be true in a practical sense when the field distri-

bution suffers a reasonably small change from the opening.

In this sense, the mode functions in the following analysis

are represented by a function @ corresponding to the axial

electric or magnetic field (E., H,) as

1:02= I;t’ + h’

1<,2= 1CZ2+ ,82

where

@= distribution function of Ez or H,

cO,po= permittivity and permeability in free space

ko= wavenumber in free space

k,= transverse wavenumber in the x-y plane

k,= wavenumber in the x-direction

~= wavenumber in the y-direction

h= wavenumber in the z-direction

,~(P)= spectrum of the wavenumber,8

A = amplitude constant.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

On assumption that the spectrum function has appre-

ciable value only within a range I/3 I <i%, where &2@b2, and

that 63x/2kt remains within the order of 27r, (1) can be de-

scribed in a series of the Gaussian-Hermite functions [3 ],

(
W, y2
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w’ + 4x’ )

(

Zwy

a= ~ BnHen
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x = k,x (9)

Y=kty (lo)

whrre Bn’s are arbitrary amplitude constants and & is an

arbitrary constant that corresponds to dispersion of the @

spectrum, as shown in preceding papers [1], [3].

The cross section of the reflectors that convey one of the

modes represented by (8) is given approximately by

2x Y2
x+

w’ + 4X2 – ()
n ++- tall-’:= ~ (12)

where m is an integer. The cross point (XO, O) of the reflector

cross section to the X-axis is given for both TM and TE

mode as

() 2XO mr
Xo– n+: tan–l—

w’ = 7“
(13)

On this condition, E, of the TM modes is zero on the re-

flector surface, while the tangential component of the trans-

verse electric field does not vanish on the surface. This con-

tradiction comes from the fact that the field function is an

approximate solution for the wave equation.

For the same reason, (13) does not satisfy rigorously the

boundary condition for the TE modes. However, (13) cor-

responds to the phase front of the waves in the transverse

plane, when the field distribution function @is expressed as

a combination of the waves propagated in the X-direction.
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(14)

The reflector surface should be placed along the phase front,

so that the same field as the incident wave should be re-

flected if a mode is remesented bv only one term of the

series in (8). This is wh~ (12) gives-the r~flector for the TE

modes.

When we confine the treatment on the reflector within the

range where the reflector is nearly parallel to the Y-axis and

the term tan ‘12X/ W2 takes a small change in comparison

with other terms, the cross section is given through (12)

and (13) by

(;)’+(%’)[(3+4(%)3 ’15)

The equation is independent of the mode number m. This

fact shows that the cross section preserves similitude for

every mode, provided that W2 takes a value proportional to

XO. Figure 3 shows examples of the reflector cross section.

The radius of curvature R of the cross section on the X-axis

is given by

w’
R= Xo+— (16)

4X0’

R = lctb (17)
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Fig. 3. Refleetor cross sectiou ( W= 50).

Crosspoint of reflector to X axis XO

Fig. 4. Radius of curvature on x-axis.

where b is the physical measurement of the radius. Figure 4

shows this relationship.

The reflector cross section is given by (15) for a given

mode. However, (8) should be reformed to represent the

mode functions for a given pair of reflectors. The mode

function for each mode can be obtained by suitable choice

of the transverse wavenumber kt and the dispersion factor

of the ,&spectrurn f?o.

Here we treat only symmetrical setting of the reflectors to

the y-z plane. Let the spacing of the reflector d and the

radius of the curvature b on the x-axis be given, the trans-

verse wavenumbers are determined by (9)–(1 1), (13), (16),

and (17) as the following.

1

[

d

““” = i ‘“+ ‘2n + 1) ‘an-’ ~2bd – d’ 1
(18)

(19)

where k~n and pnfi are, respectively, kt and 130for the TM~n
or TE~. mode. The subscript m denotes the number of the

field change in the x-direction, and n in the y-direction.

Using k~n and &n, the field distribution function @~.

for the TM~n or the TE~n modes are represented for a.
given pair of reflectors as

( –pmn2y2

@mn’x’
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d
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where

]C02= k~.2 + h~m2.

For confocal setting, (18)-(20) are reduced to

‘XP1[l+G)21’1

“inn=‘/1+(22)2 “n

C:)lkm”x+[J%]”

-(n++an-’a”e’’k”’z

(20)

(21)

(22)

(23)

(24)

Transverse field configuration near the z-axis and the cor-

responding reflector surfaces are shown in Fig. 5.

The spot size is defined as the value of y where the ex-

ponential part in the mode function takes the value l/e.

The spot size WOon they-axis and w. on the reflector surface

are given as,

J2bd – d2

‘o = 4G
(25)
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Fig. 5. Transverse electric (TE~~) or magnetic
(TMA field near the z-axis.

This shows that the same discussion is made on the spot

size as in the earlier papers [9], [13], provided that the free

space wavenumber ko is replaced by the transverse wave-

number k~n.

The propagation direction O~tiof the elementary waves for

the TMmn or TE~n mode as was shown in Fig. 2 is defined

by the wavenumbers as

h km. lcmn
0.. = Cos-l ~ = sin–l ~ = tan–l ~ . (27)

mn

III. ATTENUATION

Transmission loss of this system consists of thermal loss

and diffraction loss. Attenuation per unit length is given by

the product of the attenuation for a single reflection and the

number of reflections per unit length. Attenuation constant

due to the thermal loss is given by the following equations,

when the tangential component of the transverse magnetic

field on the reflector surface is approximated by Hu.

R.AI R.
a!~,tIE 2 =2

Zohnz.d Zod COS%n
(28)

where cwr is the attenuation constant for the TM modes, and
at~ for the TE modes. Equation (28) and the first term in (29)

coin tide with the attenuation constant of the TM and TE
modes between parallel plane plates. The second term in (29)

is the attenuation due to the z-component of the current on

the reflectors.

The diffraction loss for a single reflection at the finite

aperture of 2a can be obtained by deriving an integral equa-

tion for the beam waves traveling in the x-direction. The

derivation process follows closely the one applied in earlier

papers [1], [3]. The integral equation for a pair of reflectors
with a radius of curvature b and a spacing d is

F(LT,t)= ‘i(”vLTF’”@
[1

Cos (t7)
.ejr%-l) dr

sin (t~)
(30)

(31)

y, y’ = coordinates on the reflectors

F(a, t)= field function for the perturbed modes

P= transfer ratio of the field intensity per reflection.

When u= O, the system is reduced to a Fabry-Perot resona-

tor composed of plane parallel reflectors and the integral

equation coincides with that reported by A. G. Fox et al.

[14]. The attenuation constant due to diffraction can be

obtained from

lcm.
–—In ~

ad – h..d

IV. EXAMPLE

Calculations are made on the trans

(32)

lission pro~erties for.
an example of a confocal system with a spacing d= 4nz, at

a wavelength k= 0.04 m. Dimensional proportionality is pre-

served except for the thermal loss for the systems having the

same ratio d/i = 100.

The transverse wavenumber k~n is obtained from (22).

( 1
km. = :

)
m+~+~. (33)

The condition to have a field vanishing in the y-direction is

27r
lc.n< lCO= —

0.04
(34)

then,

Y1’
m + ~ <200.5. (35)

The number of modes that satisfy this condition amounts to

40000, of which 200 modes belong to the fundamental mode

group in the y-direction (n= O). In order to simplify the ex-

pression, propagation direction 0 of the elementary waves
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Fig. 6. Thermal loss (b= d= 4 m, A =0.04 m).

is used as a parameter instead of mode notation in the fol-

lowing treatment. The spot sizes are obtained from (25) and

(26) as,

0.1595
Wo = ~~ (36)

0.2255

‘8 = 4COS e .
(37)

Figure 6 shows the attenuation constant due to thermal loss

for the two kinds of reflector material.

Diffraction attenuation is the same for the TM~n and
TE~n modes and is shown in Fig. 7 for three cases of re-

flector width. When the angle 0 gets small, the distance for

the elementary beam wave from reflection to reflection tends

to infinity. For the large value of the angle, the distance is

nearly d, while the number of reflections per unit length in-

creases for the increasing angle. There is an angle which

gives the minimum diffraction for the given reflectors.

V. EXPERIMENT

Basic measurements have been made on the reflectors

shown in Fig. 8. These reflectors are machined from alu-

minium blocks and supported on confocal condition with

iron angles. The aperture width 2a of the arc is 0,2 m and

o )

Propagation direction of elementary waves 8, deg.

Fig. 7. Diffraction loss (b= d= 4 m, A =0.04 m),

the spacing d is 0.5 m. The total width of the reflector is

0,28 m including plane flanges on both sides of the arc, as is

shown in the photograph.

Q-measurement was made by varying the length of the

reflectors from 0.5 m to 4.5 m to obtain the attenuation

constant. Figure 9 shows the theoretical and measured values

for the TE,g.,, TE,,.0, TE2,.,, and TE,,,O modes at 9.5 GHz.

The measured values are less than the theoretical ones. This

is supposedly an effect of the plane flanges along both sides

of the reflector arc. Figure 10 shows the theoretical and

measured values of the guide wavelength of the TE~O modes

versus frequency.

VI. CONCLUSION

A new beam wave transmission system was proposed.

The analysis of the system was made on the mode function

and the transmission attenuation. The theoretical results

proved to be in accord with those from physical observations.

Basic properties of the system were measured on a pair of

reflectors.

An interesting feature of this transmission is its belt-shaped

field distribution between the reflectors as well as a low

attenuation. Using this feature, we are intending to develop

railway applications of this system. The reflectors are in-

stalled on both sides of a railway track. The beam wave trans-

mission plays a role of the transmission medium for the

obstacle detection radar or a communication [14].
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Fig. 8. Reflector for basic experiment.
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